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Abstract. We have constructed a magneto-optical funnel for He atoms and studied its properties using a
laser cooled, highly mono-energetic atomic beam. A simple model of its action allows us to quantitatively
understand the observed spot size and “focal length”. We show that for a fast beam, the velocity damping
coefficient plays an important role in determining the focal length of the device. The observed spot size is
limited mainly by transverse heating processes which impose a transverse velocity spread. The device also
permits easy scanning of the focussed spot.

PACS. 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions – 32.80.Pj Optical
cooling of atoms; trapping

Metastable helium (He*) is an important atom in studies
of atom optics and laser manipulation. It has already been
used in demonstrations of atomic lithography [1,2] as well
as other atom optics experiments [3]. There is also great
interest in magneto-optical and purely magnetic trapping
in order to study collision phenomena and Bose-Einstein
condensation with this very simple atom. Therefore, the
production of bright, intense and monochromatic beams of
He* has become an important experimental problem [4].

Several characteristics of He* make its manipulation
challenging: the He* is only produced in small quantities
in a gas discharge (typical efficiencies are of order or be-
low 10−4); beam velocities are very high (> 2000 m/s
for a room temperature source); and the lifetime of the
most easily accessible state is quite long (100 ns for the
2S–2P transition). The first characteristic makes it impor-
tant to avoid any losses in the slowing and cooling pro-
cess, while the second two mean that a cooling apparatus
is necessarily quite long. An additional characteristic of
helium, its small mass or alternatively, its large recoil ve-
locity (vrec = 9.2 cm/s), also has important ramifications:
while on the one hand it means that compared to, for ex-
ample, Na, one requires relatively few photon absorptions
to decelerate a beam by a given velocity, the transverse
spreading of the beam during the slowing process is quite
large. Because a cooling apparatus need be so long, trans-
verse losses of atoms are all the more severe.

To state the problem more precisely, the rms transverse
velocity ∆v acquired by the beam due to random sponta-
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neous emissions during the slowing process is proportional
to ∆v ∝ N1/2vrec where N is the number of photon scat-
tering events to slow the atoms down. If the atoms must
travel some distance to an interaction region after slow-
ing, the beam will expand by ∆v times the flight time.
In addition, even if the flight time is kept very small, the
beam necessarily expands spatially during slowing. The
rms size of the beam ∆x after slowing is proportional to
∆x ∝ N3/2vrecτ , where τ is the atomic lifetime (see for
example [5]). The relations for ∆v and ∆x demonstrate
the problem of cooling helium: for a fixed temperature of
the initial beam, ∆v scales roughly as m−3/4, where m
is the atomic mass [5], and ∆x scales as m−1/4τ . Thus
both the small mass and the long lifetime of the ex-
cited state pose particularly difficult problems in the case
of He*.

To combat these problems we, as well as other work-
ers [6], have used transverse cooling, both before the slow-
ing process as well as during it. A convenient way to
achieve the latter objective is to use a Zeeman slower
whose magnetic field goes through zero partway along the
deceleration path, and then to insert an atomic funnel at
the zero field region. The funnel helps to refocus atoms
which escape transversely from the cooled atomic beam.
A funnel can also be important at the end of a Zeeman
slowing region in order to concentrate atoms onto a sub-
strate, as in typical lithography experiments or to concen-
trate them in the direction of a trapping region so as to
increase the capture rate into a trap.

In this paper we will describe an atomic funnel that
we have developed, which focuses an atomic beam of
relatively fast atoms (∼ 600 m/s). The length of the
laser interaction region is much shorter than the distance
at which the atoms converge to a spot and thus our regime
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Fig. 1. The focussing funnel. An atomic beam
interacts for a short time with the funnel laser
beams in a magnetic field gradient (not repre-
sented). When leaving the interaction region,
the atoms’ transverse velocities are directed to-
wards the beam axis; after a free flight all tra-
jectories cross the axis at the same point, at
a distance f from the laser interaction region
(the “focal length” of the funnel). In this pic-
ture, the transverse and longitudinal dimen-
sions are not drawn to scale.

of operation is quite different from that of most previous
funnels. A schematic diagram is shown in Figure 1. We
begin with a qualitative description in which we discuss a
sort of “thin lens” regime in which we may assume that
the transverse atomic velocity is deviated while leaving
the atoms’ transverse position unchanged. Then we will
give a simple theoretical description of the funnel based
on a damped harmonic oscillator model. This model is
simple enough to permit the derivation of analytical for-
mulae for important characteristics as the size and loca-
tion of the focal spot. We will then discuss experiments we
have performed which quantitatively test the model. We
find in particular a much improved agreement between the
measurements and the model if we take into account the
velocity lag associated with the damping.

1 Qualitative description of the funnel

An atomic funnel transversely concentrates an atomic
beam using the principle of the magneto-optical trap [7]
in the two dimensions transverse to the atomic beam.
The atoms are subject to both a friction force which
damps their transverse velocities and to a linear restor-
ing force pushing them towards the axis defined by the
funnel. In most atomic funnels described to date [8–10],
the interaction time was sufficiently long to compress the
position distribution of the atoms into a very narrow,
highly collimated beam of atoms. More precisely, the in-
teraction time is much longer than the damping time of
both the transverse position and velocity in the funnel.
This long interaction time is possible because fairly slow
(10–100 m/s) atoms were used as inputs to the funnels.

In attempting to insert a funnel partway along the
Zeeman cooling path of a He* beam, long interaction times
are quite difficult to achieve because the atoms are still
moving quite fast. One can, however, still exploit the re-
markable properties of the magneto-optical force by not-
ing that velocity damping times are typically much shorter
than position damping times. In other words, motion in
a magneto-optical trap is typically strongly overdamped.
Thus it is possible to damp the transverse velocity even
of a fast beam of atoms (the typical time scale of the
velocity damping is ~ divided by the recoil energy). The

transverse atomic velocity damps quickly to a value such
that the Zeeman shift at the position of the atom is equal
to the Doppler shift. Thereafter, the velocity is “locked”
to the slowly evolving position. After a few velocity damp-
ing times the atoms are all moving towards the axis with
velocities proportional to their transverse position. The
atoms leave the funnel and all cross the axis defining the
funnel at the same time. If the longitudinal velocity distri-
bution is narrow they will also all cross the axis at nearly
the same point in space. Thus a funnel with a short inter-
action time acts as a sort of dissipative lens, characterized
by a velocity dependent focal length, taking an arbitrary
transverse phase space at the input to a beam converging
to a single point. We will refer to this type of device as a
“focussing funnel”.

The focussing funnel was discussed and demonstrated
on an uncooled beam of Ne* atoms in reference [6]. A
“focal spot” of a few mm was observed and the authors
attributed this size to chromatic aberration of the device,
i.e. the fact that the focal length of the funnel is velocity
dependent. We have constructed a similar device in our
laboratory. In contrast to reference [6], our funnel was at
the end of a Zeeman cooling apparatus and so we were able
to study the funnel with a highly monochromatic beam of
atoms. We find spot sizes quite similar to those observed
in reference [6] in spite of our longitudinal cooling, and
a simple model of our funnel indicates that the size of
the spot is actually limited by the dispersion in transverse
velocities.

As in reference [6], we use an increasing magnetic field
gradient in the interaction region. We do this because the
spatial and velocity capture range of the funnel is larger
for smaller gradients, while the focal length is mostly de-
termined by the magnetic field gradient at the end of the
interaction. Thus we are able to maximize the capture
range while minimizing the focal length of the funnel. We
have found an effect due to the finite value of the veloc-
ity damping coefficient that modifies the simple formula:
“Zeeman shift equals Doppler shift” inside the funnel. This
happens when the field gradient increases so rapidly that
the atomic velocity lags somewhat the steady state value
at a given transverse position. This effect lengthens the
effective focal length of the funnel observed in the exper-
iment.
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2 Damped harmonic oscillator model

We will use a damped harmonic oscillator model to de-
scribe the action of the funnel, deriving approximate an-
alytical expressions for the focal length and the spot size.
We simply assume that the atoms feel a friction force lin-
ear in velocity and characterized by a coefficient α. The
quantity α in our experimental situation will be estimated
using a Doppler cooling model (see Sect. 5). We will also
assume that the restoring force in the MOT is found by
introducing a spring constant K, given by [11]:

K = α
µ

~k
b.

Here µ describes how the atomic resonance frequency
varies as a function of magnetic field. In the case of He*,
the relevant Zeeman sublevels are J = 1, mJ = 1, in the
ground state and J = 2, mJ = 2 in the excited state,
which gives µ/~ = µB/~ = 1.4 MHz/G. The quantity
b is the gradient of the x (transverse) component of the
magnetic field, ∂Bx/∂x. We wish to model a situation in
which b is a function of z, the longitudinal position of the
atom in the funnel. We will model this increase by writing
b(z) = b0G(z) where b0 is the field gradient at the be-
ginning of the interaction region and z is the position of
the atom measured from the beginning of the interaction
region. The function G(z) is therefore dimensionless and
G(0) = 1.

If we imagine the motion of the atoms of mass m in
a reference frame moving along z with the atoms, and we
neglect the fluctuating part of the force due to the quan-
tized nature of momentum exchange between the atoms
and the laser field, their transverse motion is described by
the following differential equation:

..
x +γ

.
x +ω2F (t)x = 0 (1)

with F (t) = G(vzt), γ = α/m and ω2 = K(b0)/m. This is
an equation for a simple harmonic oscillator with a time
dependent spring constant. Including a fluctuating force
and then averaging the equation over a time scale long
compared to the fluctuations yields the same differential
equation for the mean values of x,

.
x and

..
x. Note also that

for our parameters the oscillator is overdamped i.e. ω <
γ/2, and thus the lens is purely dissipative.

Now we will use this model to estimate two important
features of the funnel, the focal distance, at which the
beam converges, and the size of the beam at that point.

The focal length of the funnel. Since the interaction
length is short, the focal length f of the funnel is given
by the relation between the transverse velocity and the
transverse position of the atoms at the output of the funnel
(f = x/ẋ|outvz). The simplest way to estimate f is to
suppose that the large value of the damping coefficient
allows one to neglect

..
x compared to the other terms in

equation (1). This gives:

γ
.
x (tint) = −ω2F (tint)x (tint) , (2)

were tint is the interaction time. This corresponds to as-
suming that the velocity is always “locked” to the lo-
cal position, or that the Doppler shift compensates the

Zeeman shift inside the funnel, as was done in reference [6].
In this case the longitudinal velocity and the magnetic
field gradient at the output of the funnel are the only pa-
rameters determining the focal length, and one finds

f = vz
~k
µBbf

(3)

were bf is the field gradient at the end of the interaction
region.

A different approximation is possible, however, if one
uses the fact that the interaction time is much shorter
than the damping time of the position ((ω2/γ)F (t))−1

(the “thin lens” approximation). In this case, the atom’s
position hardly changes during the interaction and one
can replace x in the differential equation by a constant
x0, the position of the atom when entering the funnel. In
this case one has an expression for

.
x as a function of x0

and tint the interaction time:

.
x = x0ω

2e−γtint

∫ tint

0

eγtF (t)dt+
.
x (0)e−γtint . (4)

The second term may be dropped if the interaction time
is long compared to the velocity damping time, as we will
assume in the following.

It is useful to discuss the simple special case of a lin-
early increasing gradient, F (t) = (1 + βt). In this case we
have (again assuming γtint � 1):

.
x |out = x0

ω2

γ

(
1 + βtint −

β

γ

)
(5)

yielding the same expression as in equation (2) except for
the correction due to term β/γ. This is the “lag” discussed
at the end of Section 1, leading to a somewhat lower ve-
locity for a given transverse position, and a slightly longer
focal length than in the estimate of equation (3):

f = vz
~k
µBbf

(
1− β

γ(1 + βtint)

)−1

. (6)

Typically, in our experiment βtint � 1 so that the frac-
tional correction to the focal length is approximately
1/γtint.

To get a feel for the quality of this approximation, we
can compare a numerical solution of equation (1) and the
approximate ones under our typical experimental condi-
tions. In Figure 2 we show the evolution of the transverse
velocity as a function of time according to the three mod-
els. The parameters are: ω ≈ 3×103 s−1, γ ≈ 6×104 s−1,
β ≈ 9×104 s−1, and tint = 10−4 s, corresponding to a gra-
dient which increases linearly from 1 G/cm to 10 G/cm
in 100 µs. The other parameters are also typical for
our experiment. The two straight lines correspond to the
equations (3, 6). The curved lines correspond to the nu-
merical solution for an initial position x0 = 5 mm, and
two different initial transverse velocities. One sees that
first, the lag term represents a substantial correction to
the velocity, and second, that the exact solutions approach
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Fig. 2. Evolution of the transverse velocity in the funnel. The
parameters are ω ≈ 3×103 s−1, γ ≈ 6×104 s−1 (≈ (17 µs)−1),
β ≈ 9×104 s−1 and x0 = 5 mm. Curves (a) and (b) correspond
to the approximate solutions without (Eq. (2)) and with the
lag term (Eq. (5)), respectively. Curves (c) and (d) show the
numerical solutions of equation (1), for two values of the initial
velocity.

very closely the approximate solution including the effects
of lag.

Size of the focal spot. The most important contribu-
tions to the size of the focussed beam are: (1) the spread
in longitudinal velocities and (2) the spread in transverse
velocities. These two contributions can be estimated by
simply assuming that f = x/ẋ|outvz and using our knowl-
edge of the longitudinal and transverse velocity spreads.
The rest of the damped harmonic oscillator model is not
necessary.

(1) Size due to the longitudinal velocity spread ∆vz , or
the chromatic aberration of the funnel: the size of the focal
spot ∆x in the x direction is ∆x = (∆vz/vz)x0, where x0

is the transverse position of the atom at the exit from the
laser interaction region. Our measurements of the longi-
tudinal velocity spread after cooling (see below), indicate
(∆vz/vz) < 0.01, while the maximum exit radius is less
than 2 cm. Thus the contribution due to the longitudinal
velocity spread should be smaller than 0.2 mm.

(2) Size due to the transverse velocity spread ∆vx:
although the action of the funnel causes the transverse
velocity to lock to a value determined by the transverse
position x0, there is, as always in laser cooling, a spread of
velocities about this value due to fluctuations in the aver-
age radiation pressure force exerted by the lasers. The po-
sition spread due to this effect is simply the product of∆vx
and the time of flight between the funnel exit and the focal
point. If we neglect the lag this gives: ∆x = ∆vxγ/ω

2. To
estimate ∆vx we note that the Doppler cooling limit for
He* in 3D is ∆vx = 0.3 m/s. However our laser linewidth
is larger than the natural linewidth of the transition, and
the beam intensity is very high (see Sect. 3) therefore we
certainly expect ∆vx to be larger than this limit. This ex-
pectation is confirmed by measurements by several groups
which find typical velocity spreads in 3D MOTs of or-

der 1 m/s for He [12–14]. If we assume a velocity spread,
∆vx = 1 m/s, we find ∆x = 1 mm, very close to our
observations. Therefore it appears to us that this is the
limiting factor in the size of our focussed spot.

It is interesting to note that this size is different from
the steady state size of a 3D MOT if we assume that a
MOT is described by a damped harmonic oscillator equa-
tion. For a MOT, ∆x = ∆vx/ω, which is smaller by a
factor of ω/γ. In the case of our funnel, and using the exit
value of the field gradient to calculate ω, we find that this
factor is of order 0.1–0.5. The larger the field gradient, the
smaller should be the focal spot.

In principle the funnel may also have “spherical aber-
rations” due to the nonlinearity of the friction force as a
function of velocity and due to nonlinearity of the mag-
netic field gradient. Comparisons between the linearized
friction model and numerical integration of trajectories
including the full velocity-dependence of the friction force
indicate that departures from linear friction are negligible
for typical parameters in our experiment. Our measure-
ments of the field profiles in the transverse direction also
indicate that contributions of nonlinear transverse mag-
netic field gradients are negligible.

3 Description of experiment

Experiments were carried out using a beam of metastable
helium, He*, in the 23S1 state. The beam design is similar
to that of reference [4]. More details of our source can be
found in reference [15]. Briefly, the metastable atoms were
produced in a DC discharge using a skimmer as the an-
ode, and a brass needle as the cathode. The discharge was
cooled by liquid nitrogen. Measurements of fluorescence
using the Doppler effect indicated a velocity distribution
centered at 1300 m/s with a FWHM of 300–400 m/s. The
measured intensity was of order 1014 s−1sr−1.

The metastable beam was transversely laser cooled by
a two dimensional molasses using a diode laser tuned to
the 23S1−23P2 transition (λ = 1.083 µm). The molasses
interaction region was located 4 cm behind the skimmer
and had a length of 10 cm. This cooling increased the
on axis intensity of the metastable beam, measured at a
distance of 3.3 m behind the skimmer, by about a factor
of 10–20.

After transverse collimation the beam enters a tapered
solenoid (the Zeeman slower). The longitudinal magnetic
field in this region increases rapidly to a maximum of
B0 = 420 G and then slowly diminishes to zero following
roughly a profile B = B0

√
1− z/a were a ≈ 1.9 m. The

solenoid consists of 20 layers of copper windings of differ-
ent lengths. A circularly polarized laser beam tuned to the
red of the 23S1−23P 2 transition longitudinally slows and
cools the beam. The slowing laser power was 30 mW. Its
diameter was 3 cm at the output of the Zeeman slower and
it was approximately focussed onto the skimmer. With
this setup we were able to slow the atomic beam to a se-
lectable velocity between 300 and 900 m/s. When slowing
to 500 m/s, we are able to slow about 1/3 of the available
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Fig. 3. Schematic view of the funnel. After exiting the Zeeman
slower, the atomic beam enters the interaction region with the
funnel laser beams of length five centimeters. During this inter-
action, the atoms experience an increasing magnetic field gradi-
ent created by four permanent magnets in a linear quadrupole
configuration.

Fig. 4. Measurements of the magnetic field gradient profile
along the beam axis. Curves (a) and (b) correspond to a dis-
tance between the magnets and the axis of 6.5 cm and 9.7 cm
respectively. The solid lines show the calculated profiles. The
vertical lines show the region where the funnel laser beams are
applied.

atoms. Measurements of the Doppler profile of the slowed
beam allow us to place an upper limit of ∆vz < 5 m/s on
the longitudinal velocity spread.

The funnel is placed at the output of the Zeeman
slower. The atoms drift for 10 cm and then enter the
laser interaction region whose length is 5 cm. The inten-
sity of the funnel laser beams corresponded to 10 mW per
beam over a waist of approximately 5× 2 cm2. The laser
frequency was locked to the atomic transition in a satu-
rated absorption cell. A small detuning was introduced
by slightly tilting each laser beam with respect to the

plane orthogonal to the atomic beam axis, by an angle
θ (the laser beams are then no longer parallel). The ef-
fective (red) detuning is then θvz/λ, which gives about
0.5 MHz for θ = 1 mrad and vz = 500 m/s. In a typical
experiment, the angle θ was optimized to give the small-
est atomic spot. Immediately after the laser interaction
region there are 4 permanent ferrite magnets placed in a
linear quadrupole configuration (see Fig. 3). This configu-
ration of the magnets creates a field gradient b = ∂Bx/∂x
which increases as the atoms pass through the laser beams.
The magnets are 7.4 × 5 × 2 cm3 and are placed 6 to
12 cm from the axis of the atomic beam. The magnetic
field at the surface of each magnet was measured to be
850 G. Measurements of b as a function of z are shown in
Figure 4. In the absence of the laser beams the effect of
the magnetic field on the atoms’ trajectories is negligible.

4 Measurement techniques

We performed a series of measurements of the size
of the atomic beam for various configurations of the
Zeeman slower and the funnel. Note that it is necessary to
make these measurements without interrupting the slow-
ing laser. Thus an optical detection scheme is desirable.
To this end we developed the scannable laser absorption
detection system shown in Figure 5. We use a galvo-driven
rotating mirror to vary the angle of incidence of a colli-
mated laser beam (intensity 2 mW) on a cylindrical lens
of focal length 20 cm. The mirror is at the focus of the lens
and therefore after the lens the beam executes a transla-
tion parallel to the axis of the optical system. In addition,
the lens focuses the beam to a waist of 260 µm×1.5 cm for
good spatial resolution. The laser beam exits at the oppo-
site side of the vacuum system and a second lens collects
the transmitted light and focuses it onto a photodiode.
The laser is frequency modulated (by modulation of the
injection current) at 15 kHz, the frequency excursion is
about 2 MHz. The photodiode signal is demodulated at
that frequency by a lock-in amplifier with a typical time
constant of 1–3 ms. The atomic absorption signal has the
advantage of being insensitive to the scattered light in the
vacuum chamber, and in addition one obtains immedi-
ately a measurement of the optical thickness of the atomic
beam.

The system could be tilted out of the plane of Fig-
ure 5 so as to be sensitive to the longitudinal velocity.
The ability to detect a specific longitudinal velocity class
is important since in many cases our atomic beam con-
tains an irrelevant, uncooled component. Typical tilt an-
gles were of order 5 degrees out of the plane of Figure 5 (or
85 degrees to the atomic beam axis). To make a transverse
beam profile measurement, we locked the laser frequency
at a point where the lock-in signal was maximal (i.e. where
the derivative of the absorption signal was maximum) and
then scanned the detection beam slowly (in about 1 s)
across the transverse profile of the slowed atomic beam.
These scans could be repeated and averaged, if necessary,
on a digital oscilloscope. This system permitted real time
optimization of the funnel parameters.
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Fig. 5. The scanning probe detec-
tion technique. A frequency-modulated
probe laser beam is focussed on the
atomic beam with a cylindrical lens. A
galvo-driven rotating mirror, placed at
the focal point of the lens, allows a ver-
tical scan of the probe across the atomic
beam section. The transmitted light is
detected using a lock-in scheme.

This technique only gives information on the atom dis-
tribution along the direction of translation of the detec-
tion beam. To get two dimensional information, we use a
thin sheet of light intersecting the atomic beam. This light
sheet consisted of a laser beam 4 cm × 1 mm, which was
tilted at 45◦ with respect to the atomic beam propagation
axis. A cooled CCD camera recorded the fluorescence of
the atoms as they passed through the probe. As in the
scanning beam technique, we rendered the fluorescence
velocity selective by choosing the propagation direction of
the light sheet to be at a slight angle to the plane orthog-
onal to the atomic beam axis. A several minute exposure
followed by a background substraction permitted observa-
tion of the focussed beam cross-section with good signal
to noise.

The velocity sensitivity of our detection also has a dis-
advantage. If we use the funnel to strongly focus the atoms
in two dimensions, the resulting beam has a large veloc-
ity spread in the direction of propagation of the detection
beam. The signals of the scanning probe as well as the
sheet of light will thus be diminished. In the case of the
spatially scanning probe beam we chose to concentrate
on measuring the characteristics of the funnel when op-
erating in 1D, that is with only one pair of counterprop-
agating laser beams acting on the atoms in the presence
of a linear quadrupole field. In the case of the sheet of
light/fluorescence detection, we scanned the frequency of
the laser beam across the Doppler width of the focussed
beam during exposure, to record the signal from all trans-
verse velocities.

5 Experimental results

Before using the funnel we performed measurements of
the transverse size of the atomic beam as a function of
the final velocity after the Zeeman slower. The detection
beam was placed about 70 cm after the focussing funnel.
The results are shown in Figure 6, and clearly show the
effect of the transverse spreading. Simple models of the ex-
pected beam size along the lines of reference [5] predict a
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Fig. 6. Observation of the transverse spreading. The trans-
verse size of the atomic beam (FWHM) is measured 70 cm
after the Zeeman magnet, as a function of its final velocity. As
expected, one observes that the beam spreads as it is further
slowed down. The beam diameter is about 1.5 cm for a final
velocity of 500 ms−1.

larger beam size for low final velocities than we observed.
The difference is about a factor of 2 for a final velocity
of 500 m/s. We are not sure why this is so but the dis-
crepancy may have to do with aperturing of the atomic
beam in the beam tube. Even so it is clear that our beam
has expanded a great deal in slowing from 1200 m/s to
500 m/s illustrating the importance of a funnel for He*.

To demonstrate the effect of the funnel we show in Fig-
ure 7a comparison of two scans at the same position with-
out a funnel and with a 1D funnel. We observe that the
funnel takes nearly all the atoms from the initial 15 mm
wide distribution into a peak of width 1.8 mm. A similar
experiment can be done with a 2D funnel, using the sheet
of light probe as a detector. A typical result is shown in
Figure 8. A comparable focal spot size is observed. The
increase in atomic intensity in 2D is about a factor of 20.
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Fig. 7. Effect of the 1D funnel, recorded with the scanning
probe technique. Curves (a) and (b) are two transverse profiles
of the atomic beam obtained without and with the funnel laser
beams on, respectively. The measurement is performed 46 cm
after the exit of the funnel, for a 500 ms−1 atomic beam. The
initial distribution (a) is about 1.5 cm wide; the funnel con-
centrates nearly all the atoms into a spot of diameter 1.8 mm.
These profiles were averaged over ten scans (integration time
∼ 10 s).

Using the 1D configuration we then made a study of
the “waist” ∆x of the focussed atomic beam as a function
of position z along the axis. This was done by keeping the
funnel parameters fixed and placing the scanning beam
detector at various positions. The results are shown in
Figure 9. One clearly sees the convergence and then re-
expansion of the atomic beam. An arrow has been added
to show the position where one expects to find the focus
if one assumes that the transverse velocity at the output
of the funnel is simply given by f = vz~k/µbf i.e. if one
neglects the effect of the lag. In the situation depicted in
Figure 9 the lag effect is clearly very important.

To analyze the lag in detail we would like to perform
measurements such as that in Figure 9 for many differ-
ent combinations of the parameters of the funnel. Doing
the experiment exactly as was done to obtain Figure 9 is
rather difficult since it requires moving the detector, and
often modifying the vacuum system for each data point.
Instead we can obtain similar information by keeping the
detection position z fixed and varying either the longi-
tudinal velocity of the atomic beam vz (by changing the
current in the Zeeman cooler and the detuning of the slow-
ing laser) or the magnetic field gradient (by moving the
permanent magnets) in such a way as to scan the focal
spot through the detector. The two examples shown in
Figures 10 and 11, show that such scanning of the focus is
easily visualized. Again the significance of the lag is em-
phasized by the arrows which show the expected minimum
if one ignores the lag.

We used a crude model to fit the experimental data
(solid lines in Figs. 10 and 11). The atomic beam diam-
eter w measured at position z is assumed to follow the
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Fig. 8. Effect of the 2D funnel. This figure shows plots of the
fluorescence intensity distribution recorded when the atomic
beam crosses a sheet of light: (a) funnel off, (b) funnel on. The
exposure time is 5 minutes. The focussed beam size is about
2 mm FWHM; the atomic density is increased by a factor 20.

expression

w = ∆x

√
1 + (x2

0/∆x
2 − 1) (1− z/f)2

,

where ∆x and x0 are the beam sizes at the focus and
the funnel output respectively. The atomic waist ∆x is
directly measured in the experiment while the parameter
x0 is adjusted; the focal length f is computed using equa-
tion (6), in which the only adjustable parameter is the
damping coefficient γ. The value of γ consistent with the
data of Figures 10 and 11 is about (30 µs)−1. We empha-
size that this fit is a crude approximation, since we expect
both ∆x and x0 (and even γ, as will be discussed at the
end of this section) to vary when the beam velocity and
field gradient are modified (for instance, the atomic waist
∆x should vary with the beam velocity vz , see Sect. 2).
But again, it is clear that taking into account the lag term
dramatically improves the agreement with experiment.

We summarize in Figure 12 the results of several scans
as in Figure 10 in which the funnel parameters (laser in-
tensity and tilt angle θ) and the detector position were
fixed, and vz was varied to bring the beam to a focus
at the detector position (46 cm downstream the funnel
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Fig. 9. Demonstration of the focussing. The transverse size
of the atomic beam is measured as a function of the distance
from the exit of the funnel. One clearly observes the contraction
followed by the re-expansion of the beam. The atomic “waist”,
of size approximately 1.6 mm, is located at about 40 cm from
the funnel. The arrow points out the expected focal length if
the lag effect is neglected. The solid line was added to guide
the eye and does not correspond to a fit.
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Fig. 10. Effect of longitudinal velocity on focus position. The
transverse size of the atomic beam is measured at a fixed dis-
tance from the funnel (z = 46 cm), as a function of its ve-
locity. The magnetic field gradient at the output of the funnel
is 13.5 Gcm−1. As in Figure 9, the arrow corresponds to the
expected waist position if the lag is neglected. The solid line
corresponds to the fit discussed in the text.

output) for various values of field gradient bf . To compare
these results to the simple harmonic oscillator model, we
use equation (4) with tint = l/vz, were l is the length
of the interaction region (5 cm). We stress that, for our
parameters, the solutions of equation (4) are almost indis-
tinguishable from those of equation (1) as was shown in
Figure 2. The straight line (a) in Figure 12 is the predic-
tion assuming no lag effect (i.e. a very large value of γ).
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Fig. 11. Effect of magnetic field gradient on focus position.
The transverse size of the atomic beam is measured as a func-
tion of the magnetic field gradient at the output of the funnel,
at a fixed distance from the funnel (46 cm) and for a velocity
of 630 ms−1. The arrow points the expected waist position if
the lag is neglected. The solid line is obtained using the same
fitting procedure as in Figure 10, yielding γ = (28 µs)−1.

To evaluate the effect of the lag it is necessary to know
independently the value of the friction coefficient and the
variation of the field gradient in the interaction region (the
function F (t)).

To get an idea of the value of the friction coefficient one
can use the 1D, two level model described in reference [16].
In that model the friction coefficient is given by:

α = 4}k2I/I0

2∆
Γ[

1 + 2I/I0 +
(

2∆
Γ

)2
]2 · (7)

This expression is quite accurate, even for high intensities
in a Jg = 0 ↔ Je = 1 transition illuminated by coun-
terpropagating beams with σ+ and σ− polarizations [16].
Three additional complications arise in our case, however.
First, the transition we are using in He* is of the form
Jg = 1 ↔ Je = 2 , therefore transient optical pumping
effects may be very important. This is especially true if
the field gradient is increasing rapidly. Second, it is well-
known that optical pumping effects lead to friction mech-
anisms going beyond the above Doppler cooling model.
In the case of He*, where the recoil and Doppler lim-
its are not widely separated this is a difficult theoreti-
cal problem for which no analytic results are available.
Since previous experiments [17] show that the temper-
atures achieved in optical molasses are not sub-Doppler
for He*, we will not take into account these mechanisms.
Thirdly, we use DBR diode lasers whose linewidth is of
order 3–5 MHz (measured by recording a beat note be-
tween two independent lasers) which is somewhat larger
than the natural linewidth of the 23S1−23P2 transition
(1.6 MHz). However, a numerical model indicates that,
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Fig. 12. Study of the focal length. The circles in this plot cor-
respond to measured values of the magnetic field gradient and
longitudinal velocity that lead to a fixed focal length f = 46 cm.
The solid lines show the numerical solutions of equation (1),
for different values of the damping coefficient γ: (a) γ = ∞
(no lag, expression (2)), (b) γ = (9 µs)−1, (c) γ = (17 µs)−1,
(d) γ = (23 µs)−1, (e) γ = (29 µs)−1. The dotted line is a fit
taking into account the tilt angle θ between the laser beams
and the plane orthogonal to the atomic beam axis, which in-
troduces a velocity-dependent γ; the parameter value for this
fit is θ = 5 mrad. The measured gradient profile was used in
the calculation.

for our parameters, taking into account the laser linewidth
hardly modifies the friction coefficient as calculated by
equation (7). With these caveats we can estimate the value
of the damping coefficient γ, for I/I0 = 5 and ∆ = −2Γ
to be about (17 µs)−1. However this value must be con-
sidered uncertain to within at least a factor of two. In ad-
dition, we do not know precisely the value of ∆, which is
obtained by slightly tilting the funnel beams as described
in Section 3.

To find the form of the function F (t) we have measured
the variation of the field gradient in the interaction region
using a Hall probe (see Fig. 4). These results can be used
to calculate the integral in equation (4) numerically. The
solid curves in Figure 12 represent the predicted values for
vz (bf) for the measured variation of F (t) and for various
values of the damping rate γ. We see that there appears to
be some significant deviations from our model, assuming γ
constant. Indeed the observed behavior seems consistent
with a γ decreasing as the beam velocity (and the field
gradient) increases. This evolution is understandable be-
cause, in the experiment, the laser beams are deliberately
aligned at an angle θ with respect to the plane orthogo-
nal to the atomic beam axis. This tilt produces a (red)
detuning, which depends on the longitudinal velocity vz .
Thus the friction coefficient should also vary with veloc-
ity. The value of θ is not known accurately, but we can fit
the experimental data using equation (7) to compute the
damping rate with θ an adjustable parameter. The dotted
line in Figure 12 shows such a fit with θ = 5 mrad. The
agreement is quite satisfactory.

The model of a damped harmonic oscillator whose po-
sition does not vary within the interaction region thus ap-
pears to be a useful model of the behavior of the atoms in
the funnel. An important new result of the model is that
the finite velocity damping time can affect the position of
the focus. The effect is significant if the damping rate γ is
not large compared to β, the rate at which the magnetic
field gradient increases during the interaction time.

6 Applications and prospectives

As we have mentioned, the funnel is capable of taking
an arbitrary input phase space and, provided that it is
within its capture range, mapping it onto a spot. This
happens at a distance determined largely by the magnetic
field gradient. One application of this technique is to use a
time-varying transverse magnetic field to scan the atomic
beam. In principle this can be done on a time scale of order
tint = zint/vz, about 100 µs in our experiment. We have
demonstrated this modulation by adding transverse coils
to displace the zero of the field gradient. We can easily
displace a 600 m/s beam by at least ±0.5 cm, without
any distortion of the beam profile.

A second possibility, as was also pointed out in
reference [18], is to perform the analogous operation in the
time domain on a 3D MOT. A large spatial distribution
can be transiently compressed by ramping up the mag-
netic field and then switching off the lasers. Compared to
other MOT compression schemes, this technique has the
advantage that when the atoms reach a high density, no
lasers are present and thus losses or repulsive effects [19]
due to the presence of the lasers are absent. This is par-
ticularly useful for He* where it is known that large light
dependent losses are present [12]. A large cloud such as
was used in reference [13] could be compressed with little
loss of atoms to a 1 mm size, by ramping up the field gra-
dient to 20 G/cm in 100 ms – and interesting situation for
studying collisions.
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